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Abstract

The method of contour dynamics, developed for two-dimensional vortex patches by Zabusky et al. [N.J. Zabusky,
M.H. Hughes, K.V. Roberts, Contour dynamics for the Euler equations in two-dimensions, J. Comp. Phys. 30 (1979)
96–106] is extended to vortex rings in which the vorticity distribution varies linearly with normal distance from the sym-
metry axis. The method tracks the motion of the boundaries of the vorticity regions and hence reduces the dimensionality
of the problem by one. We discuss the formulation and implementation of the scheme, verify its accuracy and convergence,
and present illustrative examples.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In two-dimensions, the contour dynamics approach, initiated by Zabusky et al. [34], has made possible the
study of the inviscid motion of vortex patches containing piecewise constant vorticity; see Pullin [28] for a
review. Since vorticity follows the fluid, such a distribution remains unaltered in time within each region
and only the boundaries between regions have to be tracked as they convect with the fluid velocity. The veloc-
ity can be expressed as a line integral along the contours, thus reducing the dimensionality of the problem by
one. The approach was inspired by the so-called water-bag method in magnetohydrodynamics; for a recent
work see [12]. In principle, arbitrary vorticity distributions may be approximated by piecewise constant ones,
but to date most of the work has focussed on vortices containing single regions.

Contour dynamics has yielded mathematical insight into the nature of solutions of the Euler equations as
well as increased understanding of physical processes in shear layers and two-dimensional turbulence. For
instance Dritschel [7,8] elucidated the role of energetics in the merger and fission of vortices and in more
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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general topological changes that occur during their long time evolution. Specifically, perturbations of equilib-
rium solutions tend asymptotically to different equilibrium states which are energetically compatible with the
original state. Dritschel [10] also studied nearly inviscid two-dimensional turbulence on a sphere using this
approach and his results sharply contrast with behavior observed under the more viscous conditions of spec-
tral simulations. Neu [21], motivated to explain the genesis of streamwise braid vortices in mixing layers,
showed that highly flattened uniform vorticity cores ‘‘collapse’’ to a circular shape with concentrated vorticity
when subjected to a three-dimensional strain which models the influence of spanwise rollers and neighboring
streamwise vortices. Lin and Corcos [17], using finite-difference calculations of the two-dimensional Navier–
Stokes equations with out of plane strain confirmed the mechanism for an array consisting of counter rotating
pairs. Pullin and Jacobs [29] provided further evidence with contour dynamics simulations of vortex arrays
employing multiple contours. As a final example, we mention [33] who studied some aspects of entrainment
into a turbulent boundary layer by considering the behavior of disturbances on a uniform vorticity layer near
a wall.

This work extends the method of contour dynamics to vortex rings in the hope that it may play a similar
role in providing insight for axisymmetric flow that contour dynamics has for planar flows. The extension to
axisymmetric flow offers the possibility of expanding the repertoire of possible vortex behavior by allowing an
important effect lacking in planar flow, namely vortex stretching.

Section 2 gives a derivation of the contour dynamics formulation for the case in which x//r (the ratio
of azimuthal vorticity to cylindrical radius) is constant within each vorticity region. This form of the vor-
ticity has been studied for over a century. Helmholtz [14] already started deriving the speed of translation
of thin rings of this class in his 1858 paper and Kelvin put the finishing touches to the derivation in an
appendix to the 1867 translation of Helmholtz’ paper. In 1894 Hill presented his famous spherical vortex,
an exact steadily translating vortex in the thick core limit (see [1, p. 526]). Norbury [22] provided numer-
ical solutions for the family of steadily propagating rings between the thin-core and Hill limits. Some
dynamical aspects have also been studied. This includes Dyson’s [11] model from 1893 of thin interacting
rings (for which core dynamics can be neglected) and the stability analysis of Hill’s vortex by Moffatt and
Moore [20].

Section 3 discusses the numerical implementation of the algorithm, including treatment of the local con-
tribution to the velocity field resulting from those portions of the contour which neighbor the point at
which the velocity is evaluated. Section 4 verifies the accuracy and convergence of the numerical scheme.
Finally, §5 presents two examples: the behavior of an axisymmetric annular vortex layer and the head-on
collision of two vortex rings. Appendix A provides details on the local contribution to the velocity field
and Appendix B works out an expression for the Stokes’ streamfunction w in terms of a contour integral
which might prove useful to those who wish to find steadily translating configurations; it also helps in
computing the energy which is proportional to the integral of the product of w and the azimuthal vorticity
([1, p. 521]).

The present formulation and implementation was developed in the summer of 1984. Around the same time
Pozrikidis independently also developed a contour dynamics formulation for axisymmetric flow and his work
was reported in Pozrikidis [27] in which he studied the instability of Hill’s vortex in the non-linear regime. We
will remark on the significant differences between the two formulations where appropriate. In 1990, Möhring
sent us a 1978 diploma thesis by Poppe [26] containing a contour formulation for the streamfunction which the
author uses to calculate some generalizations of Norbury’s rings [22] containing nested contours. Poppe’s con-
tour formulation for the streamfunction appears to be different than the present one which is provided in
Appendix B.

2. Axisymmetric contour dynamics formulation

In this section we derive the equations of motion for contours which bound regions in which the vorticity is
a linear function of the cylindrical radius, r. The reason for using this distribution will be given below.

Consider cylindrical polar coordinates (x,r,/) as shown in Fig. 1; x and r measure distance along and nor-
mal to the axis of symmetry, respectively, and / is the azimuthal angle. Let the vorticity x be entirely azi-
muthal and independent of /:



Fig. 1. Cylindrical coordinates.
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x ¼ ð0; 0;x/ðx; rÞÞ: ð1Þ

The corresponding velocity field is
u ¼ ðuxðx; rÞ; urðx; rÞ; 0Þ: ð2Þ

Then for inviscid, incompressible, and barotropic flow the vorticity obeys the evolution equation [1, p. 508]:
Dðx/=rÞ
Dt

¼ 0: ð3Þ
The inclusion of the radius r in (3) is a consequence of the fact that a circular vortex line which moves from a
radius r1 to a radius r2 undergoes a change in vorticity proportional to r2/r1, i.e., according to the relative
change in its circumference. If, in some region D, we initially have
x/ ¼ Ar; ð4Þ

where A is a constant for the region, then this distribution is maintained for all time. To solve (3) it is then
necessary to follow only the interfaces between such regions which are advected according to the local fluid
velocity. An equation similar to (3) also holds in helical coordinates, the radius r being replaced by the metric
appropriate to that coordinate system; a contour dynamics formulation should also in principle be possible in
this case.

We now seek a representation of the velocity field in terms of line integrals along the generators of the
bounding surfaces of the vortical regions. Several vortex structures may be present and there may be several
nested regions within each structure, but, for brevity of the presentation and notation we will only consider the
case of a single vorticity region with zero vorticity outside of it. Multiple and nested regions are treated by
superposition. A kinematic relation between the velocity and vorticity is the Poisson equation
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r2u ¼ �r� x; ð5Þ

whose inversion for an unbounded fluid yields the Biot–Savart expression
uðxÞ ¼ 1

4p

Z
D

r0 � xðx0Þ
r

dx0: ð6Þ
Here, r ” jx � x 0j is the distance between the source and field points and $ 0 is the del operator with respect to
the source point x 0. In his numerical study of steadily translating rings, Norbury [22] used a formulation based
on the Stokes streamfunction which is more convenient than a velocity formulation for calculating steady
shapes. Reduction to contour integrals was not made and this necessitated costly plane quadratures. In
Appendix B we obtain a contour reduction for the Stokes streamfunction which might prove useful in study-
ing steady solutions more complicated than Norbury’s [22] family, for instance periodic arrays or rings with
nested regions.

For future use we note that in cylindrical coordinates
r2 ¼ A� B cosð/� /0Þ; ð7Þ

where
A � ðx� x0Þ2 þ r2 þ r02; ð8Þ
B � 2rr0: ð9Þ
For an axisymmetric distribution of vorticity x/ = x/(x,r),xx = xr = 0, the curl of the vorticity which ap-
pears in the integrand of (6) is
r� xðxÞ ¼ 1

r
oðx/rÞ

or
x̂� ox/

ox
r̂: ð10Þ
The vorticity suffers jumps at the boundary of the vortical region so the derivatives above must be interpreted
in the sense of distributions. In two-dimensional flow with uniform vorticity, $ · x(x) is non-zero only where
jumps in vorticity occur and so a formulation in terms of contour integrals is almost immediate. In the present
situation r� xðxÞ ¼ 2Ax̂ (a constant) inside D, a Dirac d concentrated on the boundary oD due to the vor-
ticity jump, and zero outside D. Hence, it is convenient to decompose the velocity field, as given by (6), into a
contribution due to the continuous vorticity distribution and another due to the vorticity jump across the
boundary:
u ¼ uc þ uj: ð11Þ
2.1. Jump contribution to the velocity field

One way of obtaining uj is to evaluate the Biot–Savart integral over a shell of thickness 2e surrounding oD
and then take the limit of zero e. This is best accomplished by transforming to an orthogonal surface oriented
coordinate system (n, s,/) as shown in Fig. 2. To ensure unit metrics let n and s measure arc length along the
respective coordinate lines. The metric for the / coordinate lines is the radius r. If h is the angle, with respect
to the axis of symmetry, of the normal direction, then these coordinates are described by the transformation
dn

ds

d/

0
B@

1
CA ¼

cos hðs; nÞ sin hðs; nÞ 0

� sin hðs; nÞ cos hðs; nÞ 0

0 0 1

0
B@

1
CA

dx

dr

d/

0
B@

1
CA: ð12Þ
On the surface of the vortex, n = 0, one has h(s,n) = h(s), the orientation of the outward pointing normal rel-
ative to the axis of symmetry. Expressing (10) in this system, we obtain
r� xðxÞ ¼ ox/

on
sin hðs; nÞ þ ox/

os
cos hðs; nÞ þ x/

r

� �
x̂� ox/

on
cos hðs; nÞ � ox/

os
sin hðs; nÞ

� �
r̂: ð13Þ



Fig. 2. Surface oriented coordinates (n, s,/) defined in the text.
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Upon insertion of this expression into the Biot–Savart Eq. (6), the contributions of the tangential derivatives,
being finite, vanish in the limit as e tends to zero, as does the last term in the first parenthesis. This leaves only
normal derivatives of the vorticity; each becomes the jump in vorticity, �Ar0, after integration over the direc-
tion normal to the surface. Thus we are left with
uj ¼
A

4p

I
c

r02ds0
Z 2p

0

� sin h0x̂þ cos h0r̂0

r
d/0; ð14Þ
where the contour c is the generator of the surface in the meridional plane. The numerator of the inner inte-
grand is the unit vector tangent to the surface in this plane. The unit vector r̂0 in the radial direction depends
on the integration variable / 0 and must be retained inside the integration, in particular
r̂0 ¼ cos /0ŷþ sin /0ẑ; ð15Þ

from Fig. 1. Substituting (15) into (14), choosing to evaluate the velocity on the xy plane (/ = 0), and iden-
tifying ŷ with r̂ on this plane, gives
uj ¼ A

I
c

Kjðs0Þds0; ð16Þ
where
Kjðs0Þ ¼ r0½�Gðs0Þ sin h0x̂þ Hðs0Þ cos h0r̂�; ð17Þ

Gðs0Þ � r0

4p

Z 2p

0

1

r
d/0; ð18Þ

Hðs0Þ � r0

4p

Z 2p

0

cos /0

r
d/0: ð19Þ
The integrals G and H, obtained from Gradshteyn and Ryzhik [13, 2.571.4] and Bierens de Haan [2, Table 68,
item 25], respectively, are
Gðs0Þ ¼ r0

p
ffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B
p Kð~rÞ; ð20Þ

Hðs0Þ ¼ 1

2pr
Affiffiffiffiffiffiffiffiffiffiffiffi

Aþ B
p Kð~rÞ � Eð~rÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B
p� �

; ð21Þ

~r �
ffiffiffiffiffiffiffiffiffiffiffiffi

2B
Aþ B

r
; ð22Þ
in which K and E are the complete elliptic integrals of the first and second kind respectively, ~r is their argument
(called the modulus) and A and B are defined in (8) and (9).
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2.2. Contribution due to the continuous part of the vorticity

After substituting the fact that r0 � xðx0Þ ¼ 2Ax̂ inside D into the Biot–Savart expression (6) one obtains
the contribution uc to the velocity field arising from the continuous part of the vorticity distribution:
uc ¼
A

2p

Z
D

1

r
dx0

� �
x̂: ð23Þ
The crucial fact which allows transformation of the volume integral in (23) to a surface integral is the
following:
1

r
¼ 1

2
r02r ¼ 1

2
r0 � r0r; ð24Þ
which can be checked (use Cartesian coordinates).
Use of (24) together with Gauss’ theorem transforms (23) to
uc ¼
A

4p

Z
oD

n̂0 � r0rdS
� �

x̂: ð25Þ
Gauss’ theorem is valid provided the integrand 1/r is regular. This holds for field points exterior to D but fails
otherwise. However, one can apply the theorem to a region which excludes a spherical region of radius � about
the singularity for interior field points and excludes a similar hemispherical region for field points on the sur-
face. It can then be shown that the volume and surface integrals arising from the excluded region vanish in
both cases as �! 0. This renders (25) valid everywhere.

For an axisymmetric surface the integrand in (25) can be simplified as follows. First, write the quantity $r

in Cartesian coordinates:
r0r ¼ � 1

r
½ðx� x0Þx̂þ ðy � y 0Þŷþ ðz� z0Þẑ�: ð26Þ
Next put y = r and z = 0, our previous choice of the azimuthal location of the field point, y 0 = r 0cos / 0 and
z 0 = r 0sin/ 0. From Fig. 2, we observe that the normal vector can be expressed as
n̂0 ¼ cos h0x̂þ sin h0r̂0 ð27Þ
¼ cos h0x̂þ sin h0 cos /0ŷþ sin h0 sin /0ẑ: ð28Þ
Substituting (26) and (28) into (25) and expressing the resulting integral in terms of the quantities, G and H

defined previously we obtain
uc ¼ A

I
c

Kcðs0Þds0; ð29Þ
where
Kcðs0Þ ¼ fGðs0Þ½ðx0 � xÞ cos h0 þ r0 sin h0� � Hðs0Þr sin h0gx̂: ð30Þ
2.3. Summary of the formulation

Finally, combining the two contributions (16) and (29) to the velocity field and invoking the dynamical fact
that the boundary is convected with the fluid, the contour dynamics formulation for axisymmetric flow reads
dxðsÞ
dt
¼ A

I
c

Kðs0Þds0; ð31Þ
where
Kðs0Þ ¼ ½ðx0 � xÞGðs0Þ cos h0 � rHðs0Þ sin h0�x̂þ r0Hðs0Þ cos h0r̂: ð32Þ



9050 K. Shariff et al. / Journal of Computational Physics 227 (2008) 9044–9062
The formulation of [27] differs from ours in the following respects. The radial component of the velocity
arises from the jump contribution only. For it, Pozrikidis’ formulation is identical to ours. The difference lies
in the treatment of the axial component of the velocity. Pozrikidis expresses the velocity potential external to
the vortex as an integral over the core, of the potential due an elemental vortex filament, which can be written
in terms of elliptic integrals of the third kind. To obtain the axial velocity this expression is differentiated with
respect to x and Green’s theorem in the plane is used to secure a contour integral for the velocity. A branch cut
is introduced to make the velocity single valued. The final expression involves the elliptic integral of the third
kind which can be written in terms of complete and incomplete elliptic integrals of the first and second kind.
The latter can be computed iteratively. The present formulation is in terms of the complete elliptic integrals
which are calculated by a log-polynomial approximation.

3. Numerical implementation

Eq. (31) is a non-linear integro-differential equation for motion of the boundaries of the vortex cores. For
numerical purposes, the contours are represented by a discrete set of node points which are convected as mate-
rial particles. The integrals are approximated by connecting the points with straight line segments. In the pla-
nar case, the segment integrals are carried out in closed form. However, quadrature is sometimes used to save
computing time. This requires that the singularity be removed with integration by parts. In the axisymmetric
case, neither of these approaches is possible. Instead, just the contribution to the integrals from segments not
adjacent to the field point is evaluated by two-point Gaussian quadrature. The elliptic integrals are calculated
using the log-polynomial approximations of [4]; the formula which is accurate to 10�8 is being used. The cost
of the method scales as N2nq where N and nq are the number of node points and quadrature points per seg-
ment, respectively. This is because for each node point Nnq integrand evaluations are needed.

Due to the logarithmic singularity of the integrand as the modulus ~r! 1, the contribution from segments
neighboring the field point is evaluated by expanding the terms in (32) in a series of powers and logarithms
about the singularity along an adjacent segment. This series is then integrated exactly term by term. The
expansions obtained using MACSYMA have the form
KðnÞ ¼ PJ
1ðnÞ þ PJ

2ðnÞ log
8n
l

� �
; ð33Þ
where PJ
i denotes a polynomial of degree J with vector coefficients, l is the length of the segment and n is a

parameter along the segment such that 0 6 n 6 1. The coefficients of the polynomials depend upon the seg-
ment geometry and are listed in Appendix A.

To assess the number of terms in the expansion necessary for accuracy and to check the analysis we com-
pared the values of the integrand for several J against the kernels obtained using the expressions of Cody to
evaluate the elliptic integrals. This comparison is meaningful because Cody’s expressions have the proper ana-
lytic behavior of the elliptic integrals in the limits ~r! 0 and ~r ! 1. For example, Fig. 3 shows the approxi-
mations for the case of a segment for Hill’s vortex spanning an arc between polar angles # = 25� and
# = 75� measured from the forward stagnation point. This length is much larger than any we used in the sim-
ulations yet the representation using five terms is accurate throughout the segment.

Fig. 4 compares the exact and computed axial velocity on the surface of Hill’s vortex using only 15 segments of
identical length. It serves as a check of the overall formulation and underscores the care with which the logarith-
mic contribution to the velocity must be treated. The results are excellent, the error at the point of maximum
velocity being 4%. The dashed curve shows the result obtained when the contribution of adjacent segments is
deleted. One observes that away from the axis the contribution from adjacent segments is substantial.

There is a standard approach for treating singular kernels which arise frequently in potential theory (see for
example the book by Jawson and Symm [15]). This technique was adopted by Pozrikidis [27]. Here, one sub-
tracts out just the singular part of the kernel. In our formulation this would be the constant term in PJ

2ðnÞ
times the log factor. The integral of this term over the entire contour is then be computed exactly for the seg-
ment or circular arc discretization and added back in. The non-singular part of the kernel is integrated using
Gaussian quadrature. The present approach also accurately integrates terms like n logn, n2 logn, etc., near the
singularity which polynomial based quadrature rules are not designed for. On the other hand, since log (n) is



Fig. 3. Integrand for the axial velocity along the chord of an arc between 25� and 75� on a Hill’s vortex with unit radius. —-, exact; - - - -, 5
term expansion; . . .. . ., 3 terms; – - –, 2 terms.

Fig. 4. Axial velocity at node points on a Hill’s vortex of unit radius and A ¼ 1. —–, exact; . . .. . ., computed with 15 segments; – – –,
deleting the contribution from adjacent segments.
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weakly varying this might be a non-issue. In Pozrikidis’ approach one can in principle increase the number of
quadrature points arbitrarily to obtain the desired accuracy. With our approach, apart from the algebra
required, the series remains truncated and segments must be kept short to maintain accuracy. The simplest
and most direct approach for treating elements (straight or curved) adjacent to a node which has emerged
in the boundary element literature is to use a quadrature rule [5] that can exactly integrate:
IðnÞ ¼
Z 1

0

½pJ ðnÞ þ qJ ðnÞ log n�dn ð34Þ
where pJ(n) and qJ(n) are polynomials of degree J; Crow provides weights and abscissae for J 6 6. For
subsequent developments the reader may consult the references in Smith [32].

The present program halves the length of segments which have stretched beyond a specified tolerance
(currently 0.016L0) and removes nodes when segments become too short (<0.004L0) provided the curvature
is sufficiently small. Here, L0 is the initial mean toroidal radius of the vortex rings. It is also essential that
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the length of segments close to the axis of symmetry be kept much less than the distance of the segment from
the axis. This is because the expansion of the elliptic integrals on a segment adjacent to a node proceeds in
powers and logarithms of the complementary modulus, r� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1� ~r2
p

which is small all along the segment pro-
vided the length l of the segment is much smaller than the minimum radius rmin of the segment (see the dis-
cussion near Eq. (49) in Appendix A). The node insertion routine ensures that l/rmin < 0.15 if this condition is
more stringent than previous criteria. This criterion is impossible to satisfy for an axis touching segment for
which we consider two sub-cases: (i) If the field point is the end point of the segment lying on the axis
(r = 0,x = 0, say) then the radial velocity is zero by symmetry while for the axial velocity, the integrand tends
to zero as the integration point (x 0,r 0) approaches the field point. Thus there is no singularity in this case and
quadrature is used. (ii) If the node point is not on the axis then numerical tests indicated that for segments
sufficiently close to being axis-normal, the series is still accurate even though the modulus ~r varies from 0
to 1, its entire range. Before an implementation is undertaken in the future, it would be worthwhile to make
a brief study of the accuracy and ease of implementation of all the options available for integration.

Another issue, which we do not address here, is the treatment of non-adjacent segments that are closer to an
evaluation point than the length of the segment. This situation arises when filamentary structures are pro-
duced or when vortices fission or merge; such events are a generic feature of vorticity dynamics. In the present
implementation we stop the calculation before such situations arise. One way to deal with this would be by
‘‘contour surgery’’ (Dritschel [9]) with removes contour portions that are close and anti-parallel. In his work,
Pozrikidis [27] also implemented removal of filamentary regions that arise when Hill’s spherical vortex is per-
turbed. In two-dimensions the need to employ contour surgery arises somewhat later in time because the
velocity induced by a segment can be computed exactly. In our case a node point that comes close to a segment
‘‘sees’’ only the two quadrature points on the segment which are an inadequate sample of a rapidly varying
integrand. The simplest approach to maintain accuracy would be to use adaptive quadrature until it becomes
too expensive and then to use contour surgery.

Time integration was performed using the fourth order Runge–Kutta scheme. In initial tests it was found that
too large a time step resulted in a shrinking volume of vortical fluid. The time step Dt was chosen to satisfy
XDt < �; ð35Þ

where X is half the vorticity at the center of the core and represents the magnitude of the eigenvalues of the
ODE system for a particle undergoing solid body rotation at angular velocity X. Numerical tests indicated that
a constraint in volume change of DV/V < 0.01% over one eddy turnover period dictated that � < 0.05. The time
step restriction from the angular motion can be eliminated by moving each node point according to the con-
tour-normal velocity (since the tangential velocity does not alter the shape of the contour). This is possible in a
better than linear representation of the contour where an accurate normal is available at node points.

The amount of insight that one may obtain from a contour dynamics run and confidence in it are increased
by extensive diagnostics. To gauge the accuracy of a calculation we monitor the flow invariants: volume, cir-
culation, impulse and, occasionally due to cost, the energy together with its spectrum E(k). The overall motion
of the vortices was obtained by calculating the positions of the centroids of the core shape and of the vorticity
distribution. Their corresponding time-rates were also monitored. It is not enough to merely visually observe
the core shape. This remark also applies to vortex calculations via finite difference or spectral methods. Even
very weak strains caused by the presence of another vortex result in the excitation of small but complex defor-
mation modes. Hence the overall features of the core deformation were obtained by fitting an ellipse to the
core shape. The dimensions and orientation of the ellipse are related to the eigenvalues and eigenvectors of
the matrix of second order moments.

4. Tests of accuracy and convergence

Fig. 5 shows the convergence in the discrete L2 norm of the axial and radial velocity as a function of the
number of segments in the case of Hill’s vortex. The slope is close to �2, consistent with the second order
accuracy of the segment discretization. There is a slight decrease in the slope as we approach machine
round-off (single precision for this test). This represents a static test of the algorithm. A good dynamic test
(suggested to us by Prof. Zabusky) is to ensure that for Norbury [22] equilibrium shapes, the core remains



Fig. 5. Error in velocities evaluated at the node points of a Hill’s vortex with unit radius and A ¼ 1. j, d, for the axial and radial
component, respectively.
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steady up to the accuracy of the Fourier coefficients in his paper. Adopting the mean toroidal radius L0 as a
reference length, Norbury [22] specifies the boundary by
.ðbÞ
L0

¼ â0 þ
XJ

j¼1

ðâj cos jbþ b̂j sin jbÞ: ð36Þ
The initial shapes are symmetric in x, about x = 0 say, . is measured from the point x = 0, r = L0 and b runs
counterclockwise from the point of maximum r on the line x = 0. We studied the excursions of the coefficients
from the values supplied by Norbury for the duration of three revolutions of a particle on the boundary for an
a = 0.6 vortex. Here a is the ratio of area-effective core radius

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Area=p

p� �
to L0. The observed deviations

must have two parts. The first reflects inherent unsteadiness due to errors in the initial shape; a ‘cautious’ esti-
mate of the error in the initial coefficients is ±0.0001 according to Norbury. The second is due to inaccuracies
in the present method; runs with 200,400,800, and 1200 segments were made to check that it converged to
zero. An overall measure of the departure from the initial shape is the quantity
rms deviation ¼ 2ðdâ0Þ2 þ
XJ

j¼1

ðdâjÞ2 þ ðdb̂jÞ2
 !1=2

; ð37Þ
which is equal, by Parseval’s identity, to
1

pL2
0

Z 2p

0

ðd.ðbÞÞ2db

� �1=2

; ð38Þ
where d signifies the difference from the Norbury value and J = 11, the number of coefficients furnished by
Norbury.

The results are shown in Fig. 6. Normalized time is defined as
t̂ � U 0t
L0

ð39Þ
where U0 is the ring translational speed and L0 is its mean toroidal radius. By 1200 segments the behavior has
visually converged and nearly repeats every particle revolution; individual coefficients exhibit the same peri-
odicity. A small but otherwise arbitrary disturbance on a two-dimensional circular vortex with uniform vor-
ticity is also periodic according to Kelvin’s analysis because the period of particle revolution is an integer



Fig. 6. History of the rms deviation of Fourier coefficients of the core boundary from the initial Norbury [22] shape for different number
of segments Ns. – - –, Ns = 200; . . .. . ., Ns = 400; – – –, Ns = 800; —-, Ns = 1200. Note: The ordinate values are multiplied by 10�4 not the
axis title.
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multiple of the period required for any Fourier mode to advance one wavelength. A power law fit to the rms
deviations at the last instant produced an order of convergence of 2.3, consistent with the segment discretiza-
tion. The amplitude of the rms deviation for 1200 nodes is less than that obtained by applying Norbury’s
bound to every coefficient. The maximum variation was observed in â2 with an amplitude of 0.00008, close
to Norbury’s estimate.

5. Examples

As a qualitative illustration of the method, we simulated a Hill’s spherical vortex with a region of vortical
fluid removed. The removed region has as its initial boundary, one of the interior streamsurfaces of Hill’s vor-
tex. The time evolution is shown in Fig. 7 where the shading indicates the vorticity containing region. Time t̂
has been normalized using the mean toroidal radius and speed of translation of a Hill’s vortex without the
hole. A violent evolution occurs during the time that the centroid of the outer boundary has propagated
2.5 radii. Irrotational fluid pushes through the rear, forming a thin cap. The vortex layer at the outer radii
thickens in spots as it rolls-up. This illustrates that distinct vortex patches can form from vortex layers by
a fast convective action without the intervention of the mechanisms of roll-up into a spiral followed by viscous
smoothing across the turns of the spiral. The last computed state in Fig. 7 is composed of patches connected
by thin sheets and a distorted region of vorticity. The total number of node points increased from 400 to 806
during the calculation. Up to the third frame, the circulation and impulse decreased by 0.1% but subsequently
more inaccuracy resulted from the closeness of non-adjacent nodes. The integrand behaves logarithmically
and polynomial quadrature is no longer accurate. Accurate computation of the integrals requires that the dis-
tance between quadrature points be smaller than the distance between non-adjacent nodes. At the last frame,
these invariants have decreased by 1%. To continue this calculation further would require contour surgery
which has been developed by Dritschel [9].

The final illustration is the head-on collision of two Norbury [22] rings with thickness parameter a = 1.0.
Fig. 8 shows successive instants during this collision. After the core has flattened at frame (d) it begins to ‘‘fill-
out’’ as in (e). At (h) a head of smaller aspect ratio has been formed. It is connected to a long flattened tail by a
thin umbilical. Fig. 9 is a magnified view of the head and umbilical. It is remarkable that the shape of the head
is fit well the two-dimensional Sadovskii–Pierrehumbert [30,24,25] vortex pair (dotted line) which propagates
without change of form. This behavior is reminiscent of inelastic solitons [16].



Fig. 7. Evolution of a vortex formed by removing a region of vortical fluid from Hill’s spherical vortex. Times normalized using the mean
toroidal radius and the speed of translation of the vortex without the hole: A, 0; B, 4.27; C, 8.53; D, 12.80.
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The location of the vorticity centroid (plus sign) shows that roughly half the circulation resides in the tail.
Owing to the considerable straining of the vortex boundaries near the collision plane and on the umbilical the
total number of node points increased from 600 to 1972. Loss of accuracy began a few time steps prior to the
last instant shown. This manifested itself as sharply increasing errors in the invariants. Nevertheless, the total
change in the volume of vortical fluid was only .034%.

Fig. 10 shows that the head-tail structure has also been observed in experiments of two colliding rings
obtained by [23]. The upper row (U) shows, at successive instants, the meridional plane illuminated by a sheet
of light. The lower row (L) is an oblique view 30� to the plane of collision. In U(b) a head with a long tail
similar to the contour dynamics result of Fig. 8h is seen. In the oblique view L(b) this appears as a concen-
tration of smoke around the periphery of the flattened rings. In L(c) the head has pinched-off and moves inde-
pendently of the tail. Probably due to slight asymmetry in the initial conditions U(c) shows that it moves at an
angle from the collision plane. The tail also fails to remain planar. Nevertheless, axisymmetry is not broken
until L(d) where the head develops the Crow [6] instability. Concentration of dye is seen at the periphery of the
tail which may indicate the formation of another head. The head-tail structure has also been observed in three-
dimensional vortex tube reconnection [31,19].

6. Summary

This work considered inviscid swirl-free axisymmetric flows consisting of regions in which the vorticity var-
ies linearly with radius. The velocity field was expressed as a contour integral which reduces the problem to a
one-dimensional integro-differential equation for the motion of the boundaries of the regions. The streamfunc-



Fig. 8. Core shapes for the collision of a ¼ 1:0; d̂ ¼ 10. +, vorticity centroids. U0t/L0: (a) 0; (b) 4.44; (c) 5.18; (d) 5.92; (e) 5.67; (f) 7.41;
(g) 8.15; and (h) 8.89.

Fig. 9. Close-up of the head at U0t/L0 = 8.89 compared with the two-dimensional steadily translating vortex pair solution (. . .. . .) of
Sadovskii [30] and Pierrehumbert [24]. +, vorticity centroid.
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Fig. 10. Smoke visualization of the collision of two vortex rings by Oshima [23]. Time progresses from left to right. U: the upper series
shows a meridional plane illuminated by a sheet of light; L: the lower series is an oblique view at 30� from plane of collision. Reproduced
with permission.
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tion was also formulated as a contour integral. The method was demonstrated for two vortex rings colliding
head-on. A head-tail structure was formed which agrees with experimental flow visualization.

Tribute to Tony Leonard for this Special Issue Dedicated to Him

I was lucky when in 1983 Joel Ferziger hooked me up with Tony to do my dissertation. Tony was then a
research scientist at NASA Ames. A few thoughtful words spoken by him often turned out to provide the key
way of looking at something. And, he had a knack for making one feel I one knew the answer all along: in
discussions he might preface his insight with I think you are trying to say this . . . ’’ I am certain that others
can recount similar phenomena. Tony has a warm, easy-going, and supportive nature which endears him to all
that meet him. That this co-exists with penetrating keenness makes him an ideal thesis adviser. His scientific
motivations remain pure and untainted: the pursuit of truth, understanding, problem solving, and fun.
Through a combination of acceptance, openness, and insight, Tony brings out the hidden and unrecognized
value in whatever person or subject he touches. (KS).

Appendix A. Contribution to the induced velocity from adjacent segments

The purpose of this appendix is to obtain the contribution to the velocity at a given node point from seg-
ments which are adjacent to it. We proceed by expanding the kernel K(s 0) in (29) in a series of powers and
logarithms. The series is then integrated exactly term by term.

Let the field point be the nth node located at (xn,rn). Let (lx, lr) be the axial and radial components of the
vector with length l, pointing in the direction of integration along the forward adjacent segment. Then along
this segment we have
x0 ¼ xn þ nlx; r0 ¼ rn þ nlr; ð40Þ
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where n is a parameter which runs from 0 to 1 on the segment. The quantities A and B defined in (8) and (9),
are along the segment
A ¼ f n2 þ pnþ q; B ¼ pnþ q; ð41Þ

where
f ¼ l2; p ¼ 2rnlr; q ¼ 2r2
n: ð42Þ
The coefficients f,p and q above are functions of the segment geometry and the expansions of the kernels
depend only on them. The contribution to the velocity at the nth node due to the segment is
Dur ¼ Alr

Z 1

0

r0Hdn; ð43Þ

Dux ¼ A �lr

Z 1

0

ðxn � x0ÞGdnþ lx

Z 1

0

rnHdn

� �
: ð44Þ
We provide expansions for each of the integrands which appears above. They are obtained with the aid of the
expansions of the elliptic functions Kð~rÞ and Eð~rÞ about ~r ¼ 1 given in Byrd and Friedman [3]. We write these
out up to
O log
4

r�

� �
r�4

� �
; ð45Þ
where r* is the complementary modulus
ffiffiffiffiffiffiffiffiffiffiffiffi
1� ~r2
p

. The leading term in the expansion of r* is OðnÞ so for con-
sistency the highest power in n that may be retained in any term is four.

What does an expansion in r* mean for our case? Let D denote the distance between the source and field
points (in the same meridional plane), i.e.,
D2 ¼ ðx� x0Þ2 þ ðr� r0Þ2: ð46Þ

Define the parameter
� � D2

4rr0
: ð47Þ
Thus if the distance between source and field points is smaller than both their radii (r and r 0) then � is small.
Simply put, � is small when local two-dimensionality holds for the line connecting the source and field points.
Now
Aþ B ¼ ðx� x0Þ2 þ r2 þ r02 þ 2rr0 ¼ ðx� x0Þ2 þ r2 þ r02 � 2rr0 þ 4rr0 ¼ D2 þ 4rr0

¼ 4rr0ð1þ �Þ; ð48Þ
while B = 2rr 0 so that
r�2 ¼ 1� 2B
Aþ B

¼ �

1þ � : ð49Þ
Thus r* is small when � is small and our expansion will hold as long as local two-dimensionality prevails along
the segment. This requires that the length of each segment be much smaller than the distance to the axis of its
end-point closest to the axis. The body of the paper discussed how this condition is maintained.

Each of the integrands in (43) and (44) assumes the following form
C log
8rn

ln

� �XJ

j¼0

cjn
j þ
XJ

j¼0

c0jn
j

" #
: ð50Þ
For r 0H and rnH, J = 4 but for (x � x 0)G it is consistent to go up to J = 5 since (x � x 0) is proportional to n.
Each of the coefficients in (50) has the structure
cj ¼ ajlr þ bjrn; ð51Þ
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c0j ¼ a0jlr þ b0jrn: ð52Þ
The following quantities recur often so it is convenient to define them at the outset.
T 1 ¼ fpq2; T 2 ¼ p3q; T 3 ¼ f 2q2; ð53Þ
T 4 ¼ fp2q; T 5 ¼ p4; T 6 ¼ fq3; ð54Þ
T 7 ¼ p2q2; T 8 ¼ pq3; T 9 ¼ q4: ð55Þ
For r 0H,J = 4 and
a4 ¼ 288T 1 � 96T 2; b4 ¼ 90T 3 � 216T 4 þ 60T 5;

a04 ¼ �384T 1 þ 224T 2; b04 ¼ �93T 3 þ 360T 4 � 152T 5;

a3 ¼ �576T 6 þ 192T 7; b3 ¼ a4;

a03 ¼ 192T 6 � 384T 7; b03 ¼ a04;

a2 ¼ �768T 8; b2 ¼ a3;

a02 ¼ �a2; b02 ¼ a03;

a1 ¼ �1536T 9; b1 ¼ a2;

a01 ¼ 3072T 9; b01 ¼ a02;

a0 ¼ 0; b0 ¼ a1;

a00 ¼ 0; b00 ¼ a01;

C ¼ �ð1=2pÞð1=1536q4Þ:

ð56Þ
After the entries for r 0H have been generated and stored, to obtain the corresponding entries for rnH do the
following. The bj and b 0j for rnH are the same as those for r 0H which you have already stored. The aj and a 0j
for rnH are zero; in other words you need worry only about the second terms in (51) and (52).

For (xn � x 0)G, J = 5 and
a5 ¼ 288T 1 � 480T 2 b5 ¼ 54T 3 � 360T 4 þ 420T 5

a05 ¼ �384T 1 þ 736T 2 b05 ¼ �63T 3 þ 552T 4 � 704T 5

a4 ¼ �192T 6 þ 576T 7 b4 ¼ a5

a04 ¼ 192T 6 � 768T 7 b04 ¼ a05
a3 ¼ �768T 8 b3 ¼ a4

a03 ¼ �a3 b03 ¼ a04
a2 ¼ 1536T 9 b2 ¼ a3

a02 ¼ 0 b02 ¼ a03
a1 ¼ 0 b1 ¼ a2

a01 ¼ 0 b01 ¼ 0

a0 ¼ 0 b0 ¼ 0

a00 ¼ 0 b00 ¼ 0

C ¼ �ð1=2pÞðtxrn=768q5Þ

ð57Þ
Finally, each integral is obtained by integrating (50) for 0 6 n 6 1:
C log
8rn

l

� �XJ

j¼0

cj

jþ 1
þ

XJ

j¼0

cj

ðjþ 1Þ2
þ

c0j
jþ 1

" #( )
: ð58Þ
For the segment behind the node, if ð~lx;~lrÞ are its components (in the direction of integration) then the expan-
sions are identical except that ð�~lx;�~lrÞ replace (lx, lr) in forming f,p and q.
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Appendix B. Contour formulation for the streamfunction

In the body of the paper, an expression for the velocity field was derived in terms of contour integrals. We
now do the same for the Stokes streamfunction, w.

In calculating the shapes of steadily translating vortex rings, the condition that the streamfunction be con-
stant on the surface of the vortex (in a steadily translating frame whose velocity is determined as part of the
solution) is easier and more accurate to impose than one requiring that the velocity be tangent to the surface.
Using the formulation one could compute the Prandtl–Batchelor eddy behind an axisymmetric body or cal-
culate steady shapes more complicated than the Norbury [22] family, for example rings with nested contours.
In his work, Norbury did not have available a contour formulation for the streamfunction and this necessi-
tated costly and less accurate plane quadratures for the solution of the integral equation for steadily translat-
ing rings.

The vector potential, A is defined as
u ¼ r� A; ð59Þ
r � A ¼ 0: ð60Þ
Given a certain u,A is defined up to the gradient of a scalar function. The condition (60) is a convenient choice
that makes A unique. Writing (59) in cylindrical coordinates and comparing it with the definition of the Stokes
streamfunction one finds
w ¼ rA/: ð61Þ

Hence, it is enough to calculate the vector potential. Eqs. (59) and (60) together imply
r2A ¼ �x; ð62Þ

whose solution for an unbounded fluid is
A ¼ 1

4p

Z
D

xðx0Þ
r

dx0; ð63Þ
where D is the vorticity containing region. The goal is to transform this equation into a form in which the
integrand is concentrated on the boundary. First, as noted previously 1/r = $ 02r/2, so that
A ¼ 1

8p

Z
Dþ

xðx0Þr02rdx0: ð64Þ
Note that we have changed the domain of integration from D to Dþ which is defined to be slightly larger than
D. This is permissible since the vorticity is zero in the extra region. The reason for this change will become
clear below. Next, we write Green’s second identity for the pair of functions x and r:
Z

Dþ
ðxr02r � rr02xÞdx0 ¼

Z
oDþ

x
or
on0
� r

ox

on0

� �
dS: ð65Þ
The reason for using the slightly larger region Dþ now becomes clear. Since oDþ lies in a region of identically
zero vorticity, the boundary integral in (65) vanishes giving:
Z

Dþ
xðx0Þr02rdx0 ¼

Z
Dþ

rr02xðx0Þdx0: ð66Þ
The introduction of Dþ was suggested to us by P. Spalart. Decompose the right hand side of (66) into two
parts, one for the interior of Dþ and another for a thin shell of width 2e which surrounds oD. Then take
the limit as e! 0. The first part vanishes because the Laplacian of the linear vorticity is zero. As an aside,
one might think at this point that the formulation could be used to obtain steady vortex rings with vanishing
$2x(x) in D which includes but is more general than the linear in radius vorticity distribution. Such steady
flows are called ‘‘controllable’’ by the Truesdell school of mechanics. Unfortunately, however, Marris and
Aswani [18] have provided a long and complicated proof that the only non-rectilinear controllable axisymmet-
ric motions are those in which x//r = constant.
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To work out the integral in the shell, introduce orthogonal curvilinear coordinates (n, s,/) such that the
surfaces n = � e,0, e coincide with the inner boundary of the shell, the surface of the vortex and the outer
boundary of the shell, respectively. If s and n are chosen to be the arc lengths on the lines along which they
vary then the metrics are (hn,hs,h/) = (1, 1,r). With these metrics the Laplacian becomes
r2xðxÞ ¼ r2½x/ðs; nÞ/̂� ¼
o

on
1

r
oðrx/Þ

on

� �
/̂þOðeÞ; ð67Þ

/̂ ¼ � sin /ŷþ cos /ẑ; ð68Þ
where OðeÞ denotes terms which disappear upon integration as e! 0. These arise from tangential (s) deriva-
tives of the vorticity. As before, let us choose the field point to be on the / = 0 plane where A/ = Az and
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� B cos /0

p
with A and B as defined in (8) and (9). Then
A/ðx; rÞ ¼
1

8p
lim
e!0

Z 2p

0

d/0 cos /0
I

ds0
Z þe

�e
dn0r0r

o

on0
1

r0
oðr0x/Þ

on0

� �
: ð69Þ
Denote the innermost integral in (69) by In. Applying integration by parts twice gives
In ¼ r0r
ox/

on0

� �þe

�e

� r0
or
on0

x/

	 
þe

�e
þOðeÞ: ð70Þ
In the limit as e! 0
x/

	 
þe

�e
! �Ar0; ð71Þ

ox/

on0

� �þe

�e

! �A sin h0: ð72Þ
Finally,
wðx; rÞ ¼ Ar
8p

I
ds0 r02

Z 2p

0

or
on0

cos /0d/0 � r0 sin h0
Z 2p

0

r cos /0d/0
� �

: ð73Þ
The two integrals with respect to / 0 can be expressed explicitly in terms of tabulated integrals denoted as I1, I2

and I3 below. The first is obtained after substituting for or/on 0 from (26) and (28) and the second after an inte-
gration by parts:
Z 2p

0

or
on0

cos /0d/0 ¼ 2 ðx0 � xÞI2 cos h0 � rI3 sin h0 þ r0I2 sin h0½ �; ð74Þ
Z 2p

0

r cos /0d/0 ¼ BðI3 � I1Þ; ð75Þ
where
I1 �
Z p

0

d/0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� B cos /0

p ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B
p Kð~rÞ; ð76Þ

I2 �
Z p

0

cos /0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� B cos /0

p d/0 ¼ 2A

B
ffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B
p Kð~rÞ � 2

B

ffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B
p

Eð~rÞ; ð77Þ

I3 �
Z p

0

cos2 /0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� B cos /0

p d/0 ¼ 2

3B2
ffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B
p ½ð2A2 þ B2ÞKð~rÞ � 2AðAþ BÞEð~rÞ�; ð78Þ

~r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2B
Aþ B

r
: ð79Þ
This formulation was checked numerically against the exact expression for Hill’s spherical vortex given in
Batchelor [1, eq. 7.2.18] relative to a reference frame travelling with the vortex. For example, at the point
where the streamfunction has a peak, the errors with 15, 30 and 60 segments were �2.4%, �.61% and
�.15%, respectively, indicating the second order convergence of the segment discretization.
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